

Research Plane

Md.Saikat Hossain Bhuiyan Scientific Officer, Soil Science Divison

BANGLADESH INSTITUTE OF NUCLEAR AGRICULTURE, BANGLADESH

26 January 2017

Introduction

□ Present condition of Soil Organic Matter
In Bangladesh, most soils have less than 1.7%, and some soils have even less than 1 % organic matter.

What Does Organic Matter Do In Soil?

- Of all the components of soil, organic matter is probably the most important and most misunderstood.
- Organic matter serves as a reservoir of nutrients and water in the soil, aids in reducing compaction and surface crusting, and increases water infiltration into the soil.

What Does Organic Matter Do In Soil?

Yet it's often ignored and neglected.

Nutrients	Amount
Nitrogen	20-30 pounds
Phosphorus	4.5-6.6 pound
Sulfure	2-3 pound

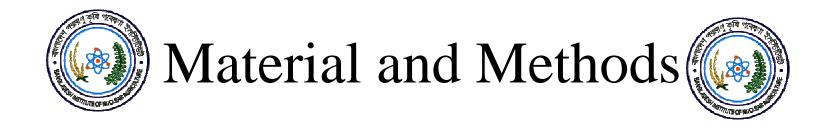
Table 1. Amount of nutrient roughly supplied by percentage of organic matter per year

Use of Isotope in Organic Residue Studies

General Objective

- ❖To determine the performance of organic matter on crop production
- ❖To determine the amount of nutrient (nitrogen) uptake from the mixture of organic matter and soil.
- ❖To determine the residual amount of nutrient available after 1st crop cultivation

Work Plan


Experiment:1

Name of Experiment: Organic matter preparation by using ¹⁵N isotope as source of nitrogen

Objective:

• To find the suitable time for Kenaf to decompose as organic matter.

Crops: Kenaf (Hibiscus cannabinus)

Design: CRD with three replication

Pot preparation: Total 27 pot use here

Soil Requirement: Around 07 kg soil required to fill the pot.

Only top soil are used here

Seed rate/m²: 30 seed/m² (10seed/pot)

Fertilizer rate: 80-100 kg N/ha, 150-200 kg P/ha and 100 kg K/ha

Fertilizer rate/pot: 0.7 g N, 1.4 g P and 0.7 g K (at 5.0% N¹⁵ abundance Urea used here)

Intercultural Operation: No need to be done

- T1: Mixed all plant part (Kenaf) after 20 days of planting
- T2: Mixed all plant part (Kenaf) after 30 days of planting
- T3: Mixed all plant part (Kenaf) after 40 days of planting

- Chemical analysis of initial pot soil,
- Amount of N added into soil,
- C:N of organic matter,
- Chemical analysis of soil at 20, 30 and 40 days after seed sowing

• Name or the Experiment: Effects of organic matter from Kenaf residues on growth and yield of short duration grow vegetable.

Objective:

• To determine effects of nutrient uptake on vegetable plant treated with organic matter from Kenaf residues.

Crops: Short duration vegetable (Sawi)

Design: Split plot with three replication

Split plot design

Replication I Replication II Replication III

\mathbf{D}_1	\mathbf{D}_3	$\mathbf{D_2}$
T_1	T_2	T_1
T_2	T_1	T_2

$\mathbf{D_2}$	\mathbf{D}_3	\mathbf{D}_1
T_1	T_1	T_2
T_2	T_2	T_1

\mathbf{D}_3	\mathbf{D}_1	$\mathbf{D_2}$
T_1	T_3	T_2
T_2	T_1	T_1

D=Days of Cultivation

T=Days of Decomposition

Treatment

(Days of Cultivation)

- $D_1 = 20$ days Cultivated Kenaf
- D₂= 30 days Cultivated Kenaf
- D₃= 40 days Cultivated Kenaf

(Days of Decomposition)

T₁-20 days Decompose into soil

 T_2 = 40 days Decompose into soil

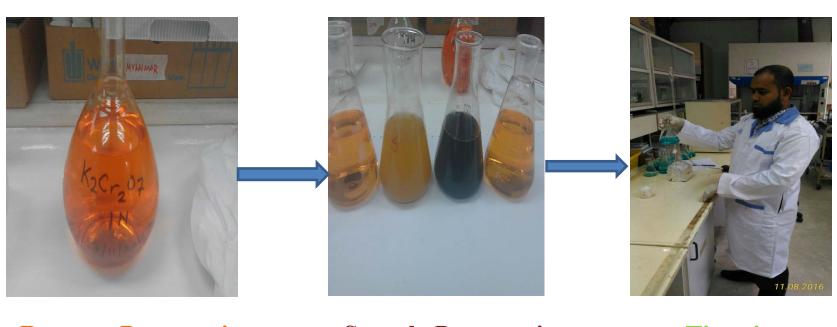
$\mathbf{D_1T_1}$	Kenaf (20 days after sowing) and 20 days decompose
D_1T_2	Kenaf (20 days after sowing) and 40 days decompose
D_2T_1	Kenaf (30 days after sowing) and 20 days decompose
D_2T_2	Kenaf (30 days after sowing) and 40 days decompose
D_3T_1	Kenaf (40 days after sowing) and 20 days decompose
D_3T_2	Kenaf (40 days after sowing) and 40 days decompose

Table 2. Treatment combination of this experiment

Pot preparation: Total 18 pot use here

Soil Requirement: Six kg soil/pot

95g/pot of total Kenaf plant material level by N¹⁵ incorporate into soil for organic matter preparation.


- Seed rate/pot : 2 seed/pot
- Fertilizer: Not add any chemical fertilizer
- Intercultural operation

- Chemical analysis of initial pot soil,
- Agronomic data on growth and yield of vegetable
- Amount of N uptake by the vegetable,
- Chemical analysis of post harvest soil

Chemical analysis

- Total N% analysis (by Kjeldahl method)
- Total C% analysis (by walkley, A and I.A Black, 1934
- Lignin content analysis (Klason lignin, using the method of the Institute of paper chemistry, Appleton)

Reagent Preparation

Sample Preparation

Titration

Statistical analysis

- Analyses of variance were performed on all measured variables using Microsoft Excel
- Treatment effects were deemed significant at P<0.05, and
- Means were subsequently separated using the LSD 0.05% level.

Result and Discussion

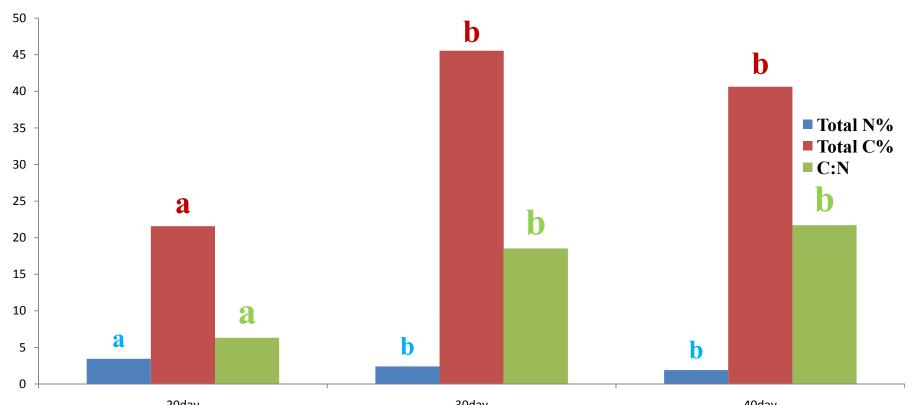
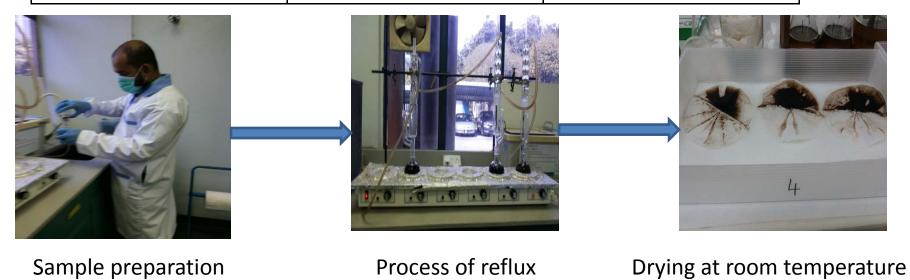



Fig 1(a). Total N%, Total C% and C:N at various day after kenaf cultivation

Table 3(a): Total n% and lignin% of kenaf at early vegetative stage

Duration of cultivation	Total N%	Lignin%
20 days	3.44	12.35
30days	2.42	14.45
40 days	1.92	18.31

Palm et al. (2001) divides residues into quality classes based on %N, %lignin

Class	Quality	Recommendation	
Class-l	have >2.5% N, <15% High quality residues		
Class-II	with >2.5% N, >15% lignin Or with <2.5% N and <15% lignin	Medium quality residues	
Class-III	with <2.5% N and >15% lignin	Low quality residues	

Considering this information kenaf plants cultivate at 40 days can be consider as low quality residues, 20 days and 30 days can be consider as high quality residue.

Experiment 2

Table 3(b). Analysis of variance for significant test

	Source of Variation	Degree of Freedom	Sum of Square	Mean sum of square	Calculated F value
Total N%	Days of Cultivation	2	0.0034	0.0017	32.23**
	Days of Decomposition	2	0.0011	0.0005	0.96
	Interaction	4	0.0011	0.0002	0.48
Total C%	Days of Cultivation	2	0.0035	0.0017	0.76
	Days of Decomposition	2	0.559	0.2796	33559.78**
	Interaction	4	0.013	0.0032	391.11**
C:N ratio	Days of Cultivation	2	964.15	482.075	56.79**
	Days of Decomposition	2	127.65	63.8265	1.45
	Interaction	4	636.53	159.1315	3.61*
Yield	Days of Cultivation	2	2718.6	1359.29	109.24**
	Days of Decomposition	2	823.15	411.5755	8.84**
	Interaction	4	1077.3	269.32	5.78**

^{** 5%} level of significant *1% level of significant

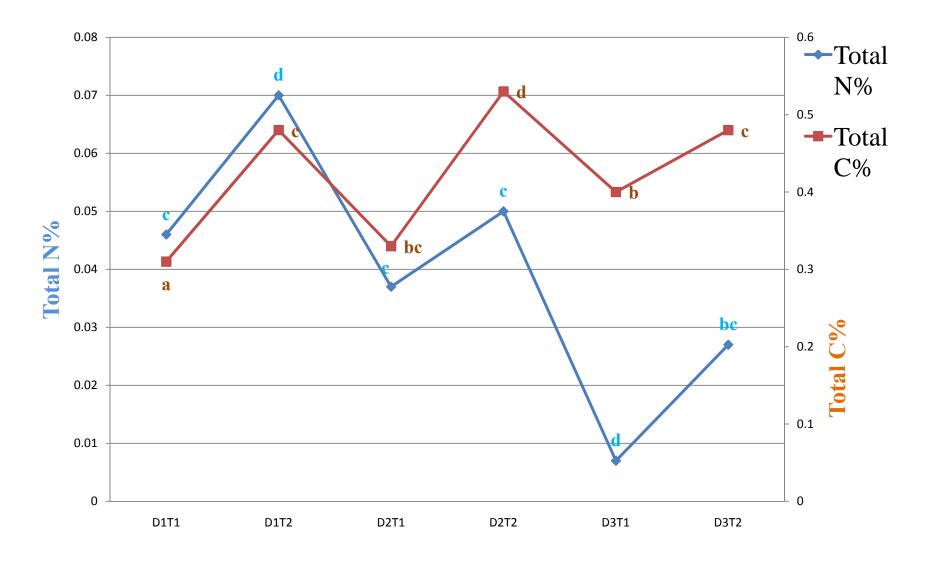


Fig 2 Total N% and C% of initial soil

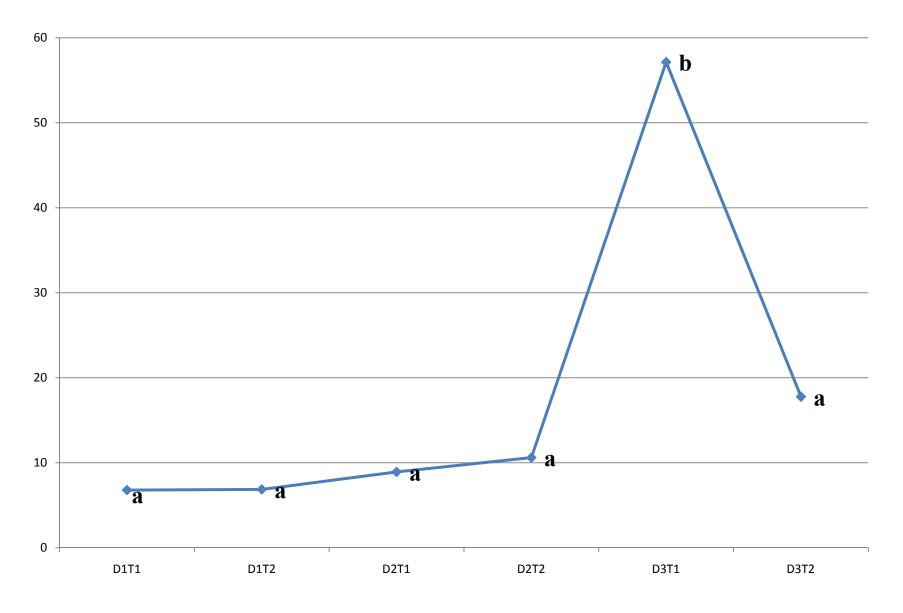
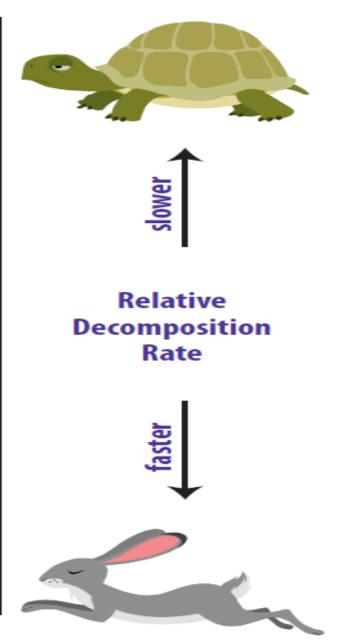



Fig 3. C:N of treated soil

Material	C:N Ratio
rye straw	82:1
wheat straw	80:1
oat straw	70:1
corn stover	57:1
rye cover crop (anthesis)	37:1
pea straw	29:1
rye cover crop (vegetative)	26:1
mature alfalfa hay	25:1
Ideal Microbial Diet	24:1
rotted barnyard manure	20:1
legume hay	17:1
beef manure	17:1
young alfalfa hay	13:1
hairy vetch cover crop	11:1
soil microbes (average)	8:1

Source: USDA Natural resources conservation service

Fig 4. Yield response of Sawi (*Brassica juncea*) on organic matter

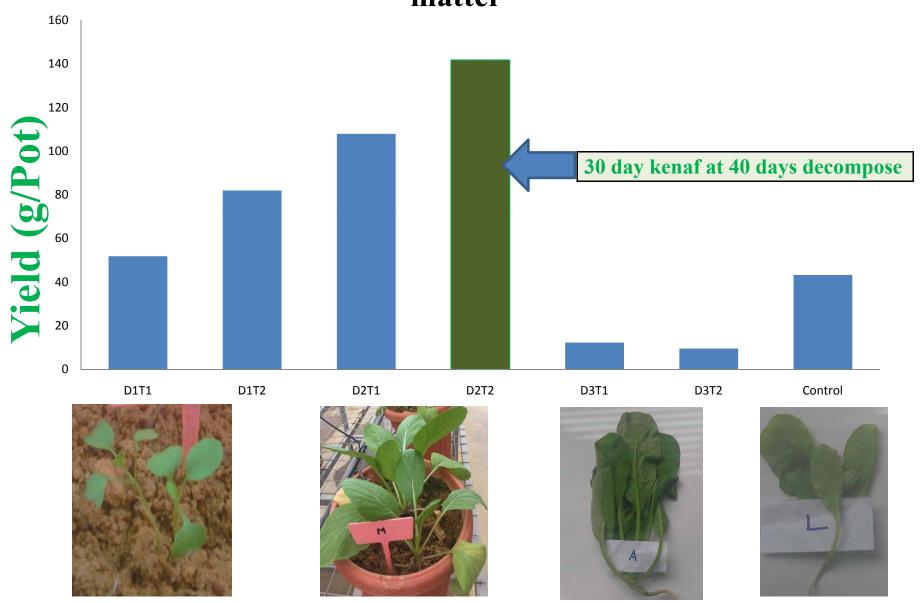
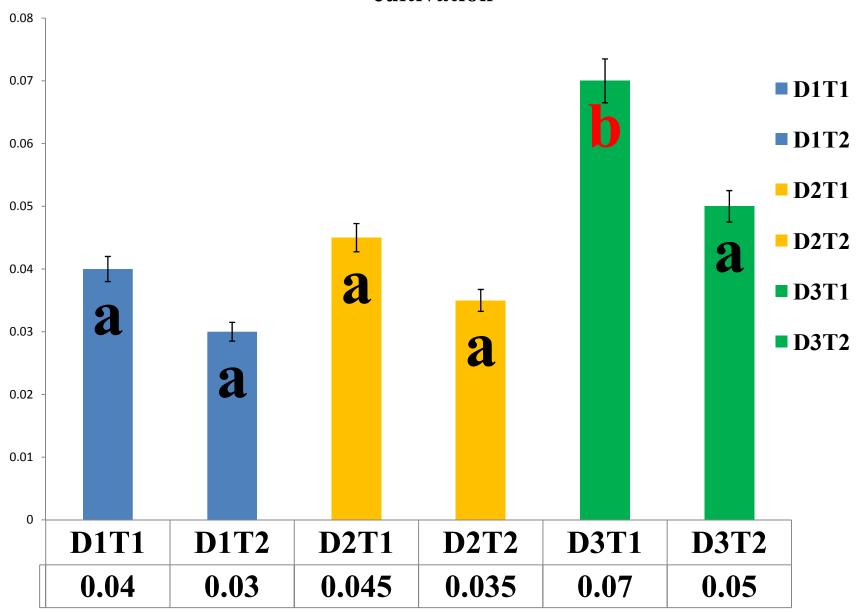



Fig 5. Residual amount of nutrient (Total N%) available after 1st crop cultivation

Summary

The age for Kenaf that suitable to be used as organic matter is at 30 days after sowing. Then, the appropriate time to decompose the kenaf into the soil is 40 days time. By using this time frame, we can grow vegetable plants without additional fertilizer and maintained organic farming.

Parte-2

Molecular Analysis of Rice Mutant

- Heritable variation is central to the success of plant breeding.
- Molecular marker are used for early generation testing

- DNA Extraction
- DNA quantification
- RAPD Analysis
 - i) PCR Cycle optimization
 - ii) Optimization of MgCl₂ concentration
 - iii) Primer optimization
 - iv) RAPD Analysis using primer ???


Material

Sample	Source of radiation	
MR219(parent)		
NMR151	Gamma	
NMR152	Gamma	
ML3	Ion beam	
ML10	Ion beam	
ML30	Ion beam	
Pongsu Seribu-2	Ion beam	
(0Gy, 10Gy, 20Gy, 40Gy, 60Gy, 80Gy, 100Gy,120Gy)	M1 generation	

Table 6. List of rice cultivar used in this experiment

DNA Extraction

Method: Modified Doyle and Doyle 1987

DNA Quantification

• Using NanoDrop ND-1000 (Thermo Fisher Scientific, USA)

Sample	A260/280	Concentration (ng/μl)
MR219	2.05	68.55
NMR151	2.00	24.1
NMR152	2.09	262.35
ML3	2.14	30.35
ML10	1.97	52.35
ML30	2.09	212.15

Table 7. Concentration of sample DNA

DNA Quantification

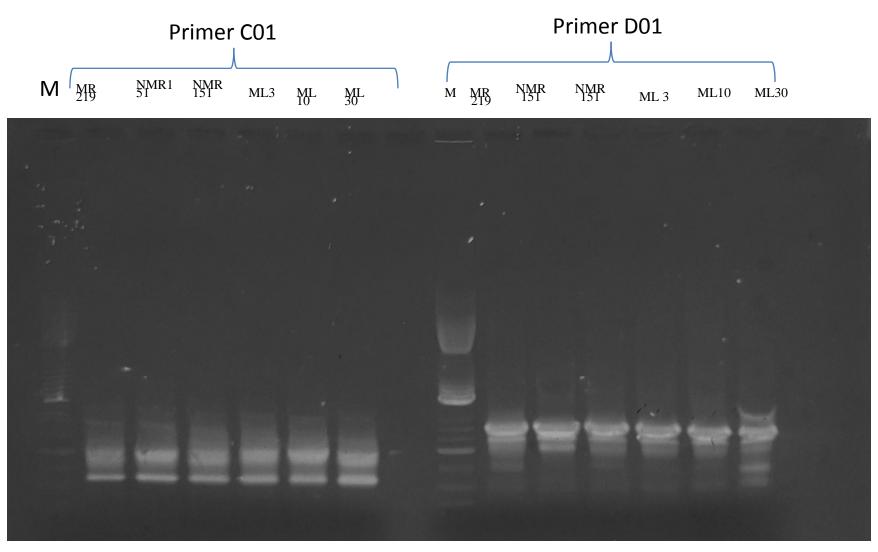
Sample	A260/280	Concentration (ng/µl)
0 Gy	1.80	5.35
10 Gy	1.76	6.75
20 Gy	2.01	54.05
40 Gy	1.97	160.3
60 Gy	2.03	114.6
80 Gy	2.54	4.85
100 Gy	1.77	31.33
120 Gy	1.54	4.85

Table 8. Concentration of sample DNA

RAPD Reaction

Reagent	Volume (1 reaction)	Final Concentration
Taq Polymerasere	0.1 μl	0.4 ml
dNTP-mix	0.4 μl	160 UM
MgCl ₂	1.6 μl	2mM
10X buffer	4.0 μl	0.8X
Primer RAPD	1 μl	16 pmol
DNA template	2 μl	25ng
ddH ₂ O	10.9 μl	
Total Volume	20 μl	

**Promega, USA


Table 9. Component of Master Mix

RAPD PCR Program

Steps	Temperature (°C)	Time (min)	Cycle
Initial Denaturation	94	10	
Denaturation	94	1	
Primer Annealing	37	0.30	40
Primer Extension	72	1	
Final Extension	72	10	
Hold	10	∞	

Table 10. Steps of PCR cycle

Fig 6. RAPD PCR Cycle Optimization (50 Cycle)

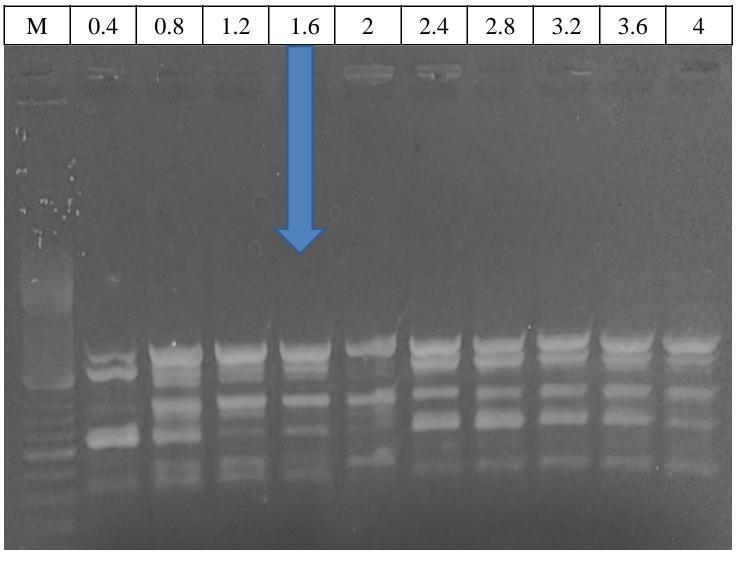

^{* 100}bp DNA step ladder (Promega)

Fig 7.RAPD PCR Cycle Optimization (30 Cycle) Primer C01 Primer D01

M NMR ISI NMR 151 MR 219 ML3 ML10 ML30 ML 3 ML10 ML30

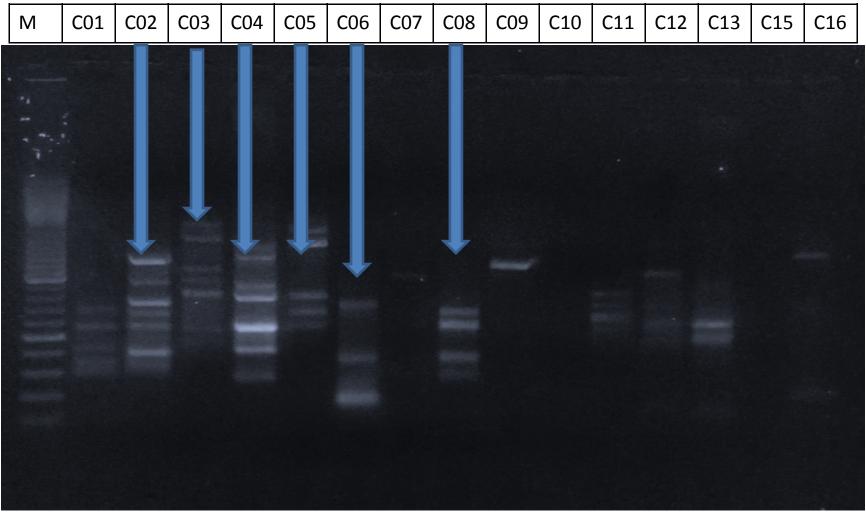

^{* 100}bp DNA step ladder (Promega)

Fig 8. Optimization of MgCl₂ Concentration

^{* 100}bp DNA step ladder (Promega)

Fig 9. RAPD Primer Optimization for Rice

^{* 100}bp DNA step ladder (Promega)

Fig 10. RAPD Primer Optimization for Rice

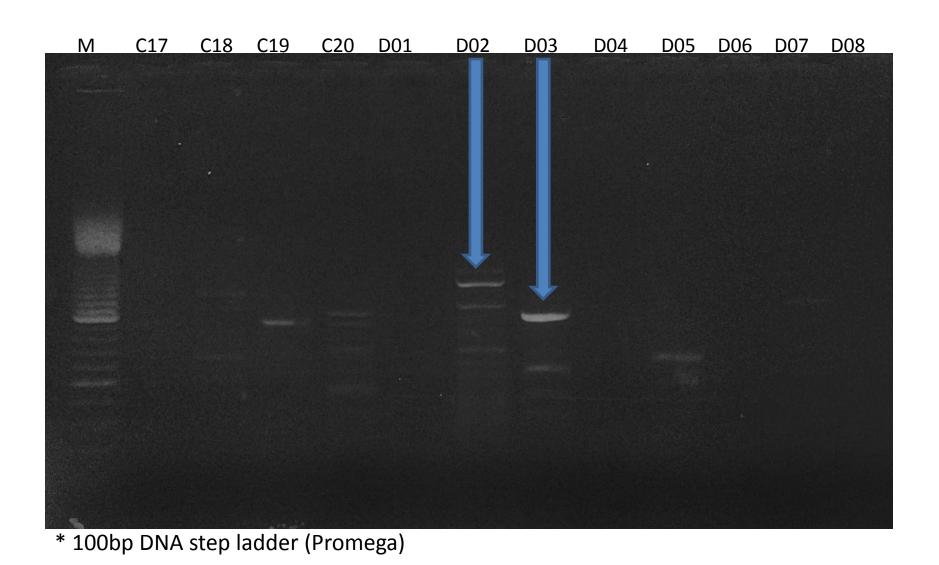
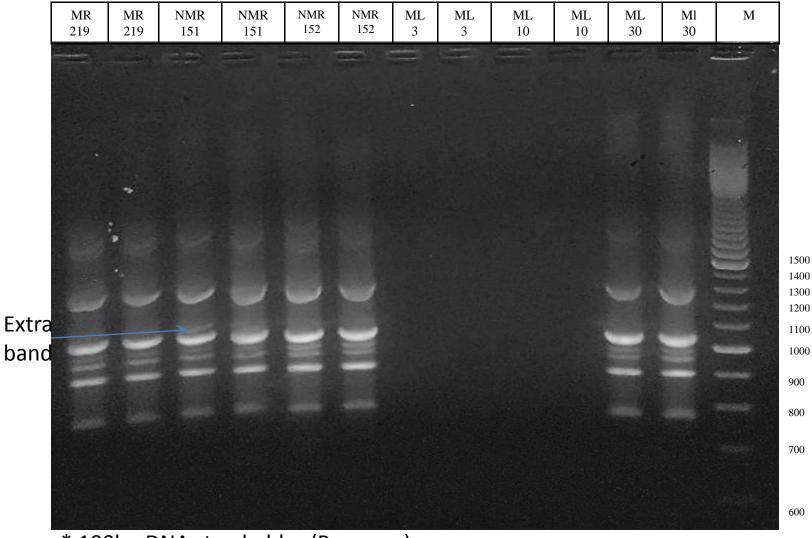



Table 11. Sequence of Selected RAPD 10mer KITS(Eurofins Genomic)

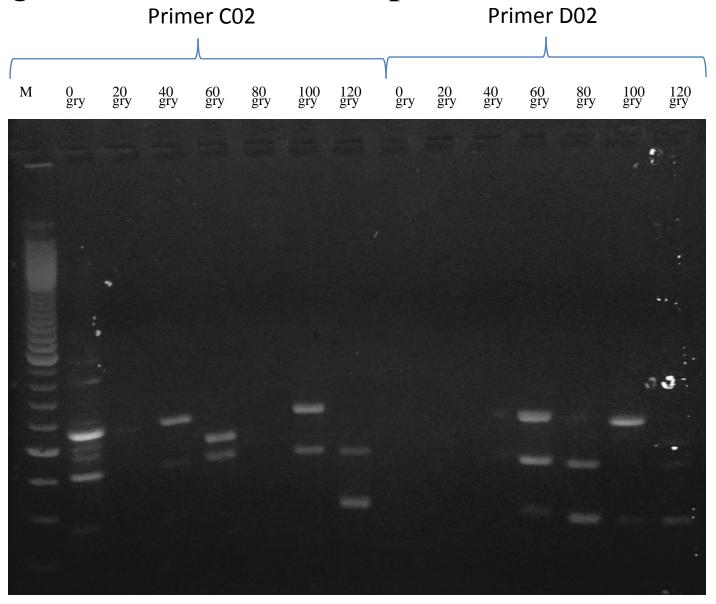
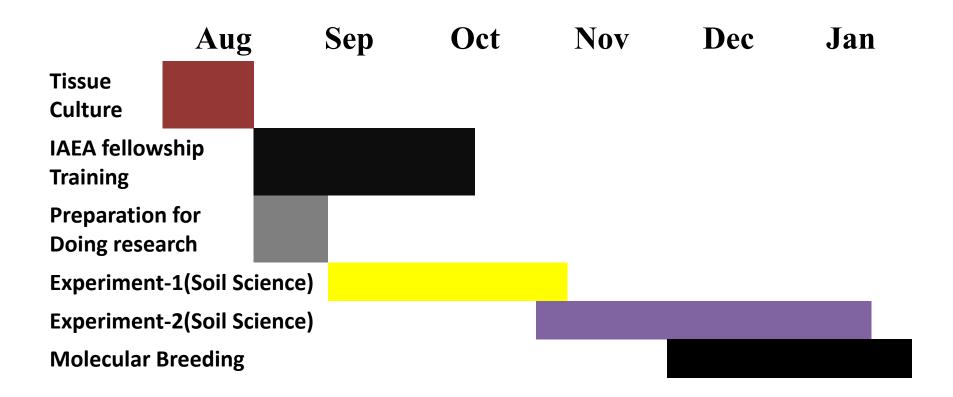

RAPD KIT	PRIMER	SEQUENCE
KIT C	OPC-02	GTGAGGCGTC
	OPC-03	GGGGGTCTTT
	OPC-04	CCGCATCTAC
	OPC-05	GATGACCGCC
	OPC-06	GAACGGACTC
	OPC-08	TGGACCGGTG
KIT D	OPD-02	GGACCCAACC
	OPD-03	GTCGCCGTCA

Fig 11. RAPD profile of different rice varieties amplified with primer POC-04

* 100bp DNA step ladder (Promega)


Fig 12. RAPD Primer Optimization for Rice

Summary of the study

 Out of 8 various RAPD primer only POC-04 able to differentiate NMR 151 to other

Monthly View

Learning from This Training

- Media Preparation
- Sub Culturing
- Isotopic Technique for Agricultural Research
- Total N% analysis(by Kjeldahl method)
- Total C% analysis(by walkley, A and I.A Black, 1934
- Lignin content analysis(Klason lignin, using the method of the Institute of paper chemistry, Appleton)

- Preparation of Extraction Buffer, TE Buffer and others solution
- RAPD-PCR optimization
- Agarose gel preparation (1% and 1.5%)
- Gel Documentation

